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I identify the mistake in Lockyer’s repeated claim of a sign error in my disproof of Bell’s theorem.
In particular, I point out that his argument is grounded, not only on a misreading of my central
equation, but also on an oversight of a freedom of choice in the orientation of a geometric algebra.

Lockyer has repeatedly claimed online that there is a sign error in my equation (17) below. To bring out his mistake,
consider a right-handed frame of ordered basis bivectors, {αx, αy, αz}, and the corresponding bivector sub-algebra

αi αj = − δij − ϵijk αk (1)

of the Clifford algebra Cl3,0. The latter is a vector space, IR8, spanned by the ordered set of graded orthonormal basis

{1, ex, ey, ez, ey ∧ ez, ez ∧ ex, ex ∧ ey, ex ∧ ey ∧ ez}, (2)

where δij is the Kronecker delta, ϵijk is the Levi-Civita symbol, the indices i, j, k = x, y, or z are cyclic indices, and

αi = ej ∧ ek = I · ei , (3)

with I := ex ∧ ey ∧ ez being a volume element of physical space. Eq. (1) is a standard definition of bivector subalgebra,
routinely used in geometric algebra [1]. From it, it is easy to verify the basic properties of the basis bivectors, such as

(αx)
2 = (αy)

2 = (αz)
2 = − 1 (4)

and αx αy = − αy αx etc. (5)

Moreover, it is easy to verify that the bivectors satisfying the subalgebra (1) form a right-handed frame of basis
bivectors. To check this, right-multiply both sides of Eq. (1) by αk, and then use the fact that (αk)

2 = −1 to arrive at

αi αj αk = +1 . (6)

The fact that this ordered product yields a positive value confirms that {αx, αy, αz} indeed forms a right-handed
frame of basis bivectors. This is a universally accepted convention, easily found in any textbook on geometric algebra.

Suppose now a = ai ei and b = bj ej are two unit vectors in IR3, where the repeated indices are summed over x, y,
and z. Then the right-handed set of graded basis defined in Eq. (1) leads to

{ ai αi } { bj αj } = − ai bj δij − ϵijk ai bj αk , (7)

which, together with (3) (which says that both +ei and αi form right-handed frames), is equivalent to the identity

( I · a)( I · b) = −a · b − I · (a× b), (8)

where I = exeyez is the standard trivector. Geometrically this identity describes all points of a parallelized 3-sphere.

Let us now consider a left-handed frame of ordered basis bivectors, which we denote by {βx, βy, βz}. It is important
to recognize, however, that there is no a priori way of knowing that this new basis frame is in fact left-handed. To
ensure that it is indeed left-handed we must first make sure that it is an ordered frame by requiring that its basis
elements satisfy the bivector properties analogous to those delineated in Eqs. (4) and (5). Next, to distinguish this
frame from the right-handed frame defined by equation (6), we must require that its basis elements satisfy the property

βi βj βk = − 1 . (9)

∗Electronic address: jjc@alum.bu.edu



2

One way to ensure this is by multiplying all vector and bivector elements in the basis set (2) by a minus sign, giving

{1, − ex, − ey, − ez, − ey ∧ ez, − ez ∧ ex, − ex ∧ ey, ex ∧ ey ∧ ez}. (10)

Note that we have not changed the signs of the scalar 1 and the pseudoscalar I := ex ∧ ey ∧ ez. As a result, although
the four-dimensional even and odd subalgebras are now left-handed, the full eight-dimensional algebra remains right-
handed, because we have changed the signs of only an even number of its elements, namely three vectors plus three
bivectors, comprising six elements in total. Another way to see this is by noting that the determinant of the matrix
that transforms the basis (2) into (10) is (−1)6 = +1. On the other hand, instead of the relationship (3) we now have

βi = − ej ∧ ek = I · (− ei ) , (11)

and therefore the condition (9) above is automatically satisfied. As is well known, this was the condition imposed by
Hamilton on his unit quaternions, which we now know are nothing but a left-handed set of basis bivectors. Indeed, it
can be easily checked that the basis bivectors satisfying the properties (4), (5), (9), and (11) compose the subalgebra

βi βj = − δij + ϵijk βk . (12)

Suppose now a = ai ei and b = bj ej are two unit vectors in IR3, identical to those used in Eq. (7), where the
repeated indices are again summed over x, y, and z. Then the left-handed set of graded basis defined in (12) leads to

{ ai βi } { bj βj } = − ai bj δij + ϵijk ai bj βk , (13)

which, together with (11) (which says that both −ei and βi form left-handed frames), is equivalent to the identity

( I · a)( I · b) = −a · b − I · (a× b), (14)

where I is the standard trivector. Once again, geometrically this identity describes all points of a parallelized 3-sphere.

Note that the geometric identities (8) and (14) are identical despite the fact that the bivector relations (7) and (13)
are not. Thus, unlike the cross product, the geometric product between bivectors remains invariant under orientation
changes if they are confined to the even (i.e., bivector) and odd (i.e., vector) subalgebras. But suppose we consider
now orientation change in the entire algebra Cl3,0 of the orthogonal directions in the 3D space by means of the basis

{1, − ex, − ey, − ez, − ey ∧ ez, − ez ∧ ex, − ex ∧ ey, − ex ∧ ey ∧ ez}, (15)

where the sign of every non-scalar element is now different from that in the set (2), including the volume element I:

I −→ −I := − ex ∧ ey ∧ ez . (16)

Since the determinant of the matrix that transforms (2) into (15) is (−1)7 = −1, the basis defined by (15) is genuinely
left-handed relative to the basis defined by (2). The question then is: How do the identities (8) and (14) transform
into one another under the handedness transformation (16) of the volume element? It is not difficult to see that under
(16) the identity (14) transforms into

( I · a)( I · b) = −a · b + I · (a× b). (17)

Crucially, there is a sign difference in the second term on the RHS of the above identity compared to the identity (8).
Consequently, the identities (8) and (17) now transform into one another under the handedness transformation (16):

( I · a)( I · b) = −a · b − I · (a× b)
+I←→−I←−−−−−−−→ ( I · a)( I · b) = −a · b + I · (a× b). (18)

For convenience, we can now rewrite these two alternative identities (8) and (17) as two hidden variable possibilities

(+ I · a)(+ I · b) = −a · b − (+ I ) · (a× b) (19)

and

(− I · a)(− I · b) = −a · b − (− I ) · (a× b). (20)

Exploiting the natural freedom of choice in characterizing orientation of the 3-sphere by either + I or − I , we can now
combine the identities (19) and (20) into a single hidden variable equation (at least for the computational purposes):

(λ I · a)(λ I · b) = −a · b − (λ I ) · (a× b), (21)
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where λ = ± 1 now specifies the orientation of the 3-sphere. It is important to keep in mind here that the combined
equation (21) is simply a convenient shortcut for representing two completely independent initial states of the physical
system, one corresponding to the counterclockwise orientation of the 3-sphere and the other corresponding to the
clockwise orientation of the 3-sphere. Moreover, at no time are these two alternative possibilities mixed during the
course of an experiment. They represent two independent physical scenarios, corresponding to two independent runs
of the experiment. Next, if we employ the notation µ = λ I, then the combined identity (21) takes the convenient form

(µ · a)(µ · b) = −a · b − µ · (a× b). (22)

This is the central equation of my local model. I have used it in various forms and notations since 2007 [2]. It is simply
an isomorphic representation of the familiar identity from quantum mechanics, with the correspondence µ ←→ iσ:

(iσ · a)(iσ · b) = −a · b 1l − iσ · (a× b). (23)

In Ref. [3] I have combined the two alternative bivector relations (7) and (13) into a single hidden variable equation

Lµ(λ)Lν(λ) = − δµν −
∑
ρ

ϵµνρ Lρ(λ) , (24)

together with Lµ(λ) := λDµ, with alternative choices λ = ± 1 for the orientation of S3. Contracting this equation on
both sides with the components aµ and bν of arbitrary unit vectors a and b then gives the convenient bivector identity

L(a, λ)L(b, λ) = −a · b − L(a× b, λ) , (25)

which is a convenient notation for the identity (22). It combines the alternative identities (8) and (17) into a single
identity, rendering the unit bivector L(n, λk) a random variable relative to the detector bivector D(n), for a given run:

L(n, λk) = λk D(n) ⇐⇒ D(n) = λk L(n, λk) . (26)

The expectation value of simultaneous outcomes A (a, λk) = ±1 and B(b, λk) = ±1 in S3 then works out as follows:

E(a, b) = lim
n→∞

[
1

n

n∑
k=1

A (a, λk) B(b, λk)

]
= lim

n→∞

[
1

n

n∑
k=1

L(a, λk)L(b, λk)

]

=
1

2

[
L(a, λk = +1) L(b, λk = +1)

]
+

1

2

[
L(a, λk = −1) L(b, λk = −1)

]
, (27)

where the last simplification occurs because λk is a fair coin. Using the relations (25) and (26) the above sum can now
be evaluated by recognizing that the spins in the right and left oriented S3 satisfy the following geometrical relations:

L(a, λk = +1) L(b, λk = +1) = −a · b − L(a× b, λk = +1)

= −a · b − D(a× b)

= D(a) D(b) = (+ I · a)(+ I · b) (28)

and

L(a, λk = −1) L(b, λk = −1) = −a · b − L(a× b, λk = −1)
= −a · b + D(a× b)

= −b · a − D(b× a)

= D(b) D(a) = (+ I · b)(+ I · a). (29)

In other words, when λk happens to be equal to +1, L(a, λk) L(b, λk) = (+ I · a)(+ I · b), and when λk happens to
be equal to −1, L(a, λk) L(b, λk) = (+ I · b)(+ I · a). Consequently, the expectation value (27) reduces at once to

E(a, b) =
1

2
(+ I · a)(+ I · b) +

1

2
(+ I · b)(+ I · a) = − 1

2
{ab + ba} = −a · b + 0 , (30)

because the orientation λk of S3 is a fair coin. Here the last equality follows from the definition of the inner product.
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