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Eight-dimensional Octonion-like but Associative Normed Division Algebra

Joy Christian∗

Einstein Centre for Local-Realistic Physics, 15 Thackley End, Oxford OX2 6LB, United Kingdom
(Dated: 17 November 2018)

We present an eight-dimensional even sub-algebra of the 24 = 16-dimensional associative Clifford
algebra Cl4,0 and show that its eight-dimensional elements denoted as X and Y respect the norm
relation ||XY|| = ||X|| ||Y||, thus forming an octonion-like but associative normed division algebra.

Consider the following eight-dimensional vector space with graded Clifford-algebraic basis and orientation λ = ±1:

Clλ3,0 = span{ 1, λex, λey, λez, λexey, λezex, λeyez, λexeyez }. (1)

Here { ex, ey, ez} is a set of anti-commuting orthonormal vectors in IR3 such that ejei = − eiej for any i, j = x, y, or

z. In general the vectors ei satisfy the following geometric product in this associative but non-commutative algebra [1]:

ei ej = ei · ej + ei ∧ ej , (2)

with

ei · ej :=
1

2
{eiej + ejei} (3)

being the symmetric inner product and

ei ∧ ej :=
1

2
{eiej − ejei} (4)

being the anti-symmetric outer product, giving (ei ∧ ej)
2 = −1. There are thus basis elements of four different grades

in this algebra: An identity element e2i = 1 of grade-0, three orthonormal vectors ei of grade-1, three orthonormal

bivectors ejek of grade-2, and a trivector I3 = eiejek of grade-3 representing a volume element in IR3. Since in IR3

there are 23 = 8 ways to combine the vectors ei using the geometric product (2) such that no two products are linearly

dependent, the resulting algebra, Clλ3,0 , is a linear vector space of eight dimensions, spanned by these graded bases.

In this paper we are interested in a certain conformal completion1 of this algebra, originally presented in Ref. [2].

This is accomplished by using an additional vector, e∞, to close the lines and volumes of the Euclidean space, giving

Kλ = span{ 1, λexey, λezex, λeyez, λexe∞, λeye∞, λeze∞, λI3e∞ }. (5)

With unit vector e∞, this is an eight-dimensional even sub-algebra of the 24 = 16-dimensional Clifford algebra Cl4,0.

As an eight-dimensional linear vector space, Kλ has some remarkable properties [2]. To begin with, it is closed under

multiplication. Suppose X and Y are two vectors in Kλ. Then X and Y can be expanded in the graded basis of Kλ:

X = X0 +X1 λexey +X2 λezex +X3 λeyez +X4 λexe∞ +X5 λeye∞ +X6 λeze∞ +X7 λI3e∞ (6)

and

Y = Y0 + Y1 λexey + Y2 λezex + Y3 λeyez + Y4 λexe∞ + Y5 λeye∞ + Y6 λeze∞ + Y7 λI3e∞ . (7)

∗Electronic address: jjc@alum.bu.edu
1 The conformal space we are considering is an in-homogeneous version of the space usually studied in Conformal Geometric Algebra [3].
It can be viewed as an 8-dimensional subspace of the 32-dimensional representation space postulated in Conformal Geometric Algebra.
The larger representation space results from a homogeneous freedom of the origin within E3, which does not concern us in this paper.



2

∗ 1 λ exey λ ezex λ eyez λ exe∞ λ eye∞ λ eze∞ λ I3e∞

1 1 λ exey λ ezex λ eyez λ exe∞ λ eye∞ λ eze∞ λ I3e∞

λ exey λ exey −1 eyez −ezex −eye∞ exe∞ I3e∞ −eze∞

λ ezex λ ezex −eyez −1 exey eze∞ I3e∞ −exe∞ −eye∞

λ eyez λ eyez ezex −exey −1 I3e∞ −eze∞ eye∞ −exe∞

λ exe∞ λ exe∞ eye∞ −eze∞ I3e∞ −1 −exey ezex −eyez

λ eye∞ λ eye∞ −exe∞ I3e∞ eze∞ exey −1 −eyez −ezex

λ eze∞ λ eze∞ I3e∞ exe∞ −eye∞ −ezex eyez −1 −exey

λ I3e∞ λ I3e∞ −eze∞ −eye∞ −exe∞ −eyez −ezex −exey 1

TABLE I: Multiplication Table for a “Conformal Geometric Algebra1” of E3. Here I3 = exeyez, e
2
∞ = +1, and λ = ±1.

And using the definition ||X|| :=
√
X ·X† (where † represents the reverse operation [1]) they can be normalized as

||X||2 =

7∑
µ=0

X2
µ = 1 and ||Y||2 =

7∑
ν =0

Y 2
ν = 1 . (8)

Now it is evident from the multiplication table above (Table I) that if X,Y ∈ Kλ, then so is their product Z = XY:

Z = Z0 + Z1 λexey + Z2 λezex + Z3 λeyez + Z4 λexe∞ + Z5 λeye∞ + Z6 λeze∞ + Z7 λI3e∞ = XY. (9)

Thus Kλ remains closed under arbitrary number of multiplications of its elements. This is a powerful property. More

importantly, we shall soon see that for vectors X and Y in Kλ (not necessarily unit) the following norm relation holds:

||XY|| = ||X|| ||Y|| . (10)

In particular, this means that for any two unit vectors X and Y in Kλ with the geometric product Z = XY we have

||Z ||2 =

7∑
ρ=0

Z2
ρ = 1 . (11)

Now, in order to prove the norm relation (10), it is convenient to express the elements of Kλ as dual quaternions.

The idea of dual numbers, z, analogous to complex numbers, was introduced by Clifford in his seminal work as follows:

z = r + d ε, where ε ̸= 0 but ε2 = 0 . (12)

Here ε is the dual operator, r is the real part, and d is the dual part [3][4]. Similar to how the “imaginary” operator

i is introduced in the complex number theory to distinguish the “real” and “imaginary” parts of a complex number,
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FIG. 1: An illustration of the 8D plane of Kλ, which may be interpreted as an Argand diagram for a pair of quaternions.

Clifford introduced the dual operator ε to distinguish the “real” and “dual” parts of a dual number. The dual number

theory can be extended to numbers of higher grades, including to numbers of composite grades, such as quaternions:

Qz = qr + qd ε , (13)

where qr and qd are quaternions and Qz is a dual-quaternion (or in Clifford’s terminology, Qz is a bi-quaternion).

Recall that the set of unit quaternions is a 3-sphere, which can be normalized to a radius ϱr and written as the set

S3 =

{
qr := q0 + q1 λ exey + q2 λ ezex + q3 λ eyez

∣∣∣ ||qr|| =
√
qr q

†
r = ϱr

}
. (14)

Consider now a second, dual copy of the set of quaternions within Kλ, corresponding to the fixed orientation λ = +1:

S3 =

{
qd := −q7 + q6 exey + q5 ezex + q4 eyez

∣∣∣ ||qd|| =
√
qd q

†
d = ϱd

}
. (15)

If we now identify λ I3e∞ appearing in (5) as the duality operator − ε, then (in the reverse additive order) we obtain

ε ≡ −λ I3e∞ with ε† = ε and ε2 = +1 (since e∞ is a unit vector in Kλ) (16)

and qd ε ≡ −qd λ I3e∞ = q4 λ exe∞ + q5 λ eye∞ + q6 λ eze∞ + q7 λ I3e∞ , (17)

which is a multi-vector “dual” to the quaternion qd. Note that we write ε as if it were a scalar because it commutes

with each element of Kλ in (5). Comparing (14) and (17) with (5) we can now rewrite Kλ as a set of paired quaternions:

Kλ =

{
Qz := qr + qd ε

∣∣∣ ||Qz|| =
√

Qz Q†
z =

√
ϱ2r + ϱ2d , 0 < ϱr < ∞, 0 < ϱd < ∞

}
. (18)

Now the normalization of Qz necessitates that for that condition to hold every qr must be orthogonal to its dual qd:

||Qz|| =
√

Qz Q†
z =

√
ϱ2r + ϱ2d ⇐⇒ qr q

†
d + qd q

†
r = 0 , (19)

or equivalently, (qr q
†
d)s = 0; i.e., qr q

†
d must be a pure quaternion (for a pedagogical discussion of (19) see section

7.1 of Ref. [4]). We can see this by working out the geometric product of Qz with Q†
z while using ε2 = +1, which gives

Qz Q†
z =

(
qr q

†
r + qd q

†
d

)
+

(
qr q

†
d + qd q

†
r

)
ε . (20)
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Now, using definitions (14) and (15), it is easy to see that qr q
†
r = ϱ2r and qd q

†
d = ϱ2d, reducing the above product to

Qz Q†
z = ϱ2r + ϱ2d +

(
qr q

†
d + qd q

†
r

)
ε . (21)

It is thus clear that for Qz Q†
z to be a scalar qr q

†
d + qd q

†
r must vanish, or equivalently qr must be orthogonal to qd.

But there is more to the normalization condition qr q
†
d + qd q

†
r = 0 than meets the eye. It also leads to the crucial

norm relation (10), which is at the heart of the only possible four normed division algebras R, C, H and O associated

with the four parallelizable spheres S0, S1, S3 and S7 , with octonions forming a non-associative algebra in addition

to forming a non-commutative algebra [5]. To verify this, consider a product of two distinct members of the set Kλ,

Qz1 Qz2 = (qr1 qr2 + qd1 qd2) + (qr1 qd2 + qd1 qr2) ε , (22)

together with their individual definitions

Qz1 = qr1 + qd1 ε and Qz2 = qr2 + qd2 ε . (23)

If we now use the fact that ε, along with ε† = ε and ε2 = 1, commutes with every element of Kλ defined in (5) and

consequently with all qr, q
†
r, qd and q†

d, and work out Q†
z1, Q†

z2 and the products Qz1Q
†
z1, Qz2Q

†
z2 and (Qz1 Qz2)

† as

Q†
z1 = q†

r1 + q†
d1 ε , (24)

Q†
z2 = q†

r2 + q†
d2 ε , (25)

Qz1 Q†
z1 =

(
qr1 q

†
r1 + qd1 q

†
d1

)
+

(
qr1 q

†
d1 + qd1 q

†
r1

)
ε , (26)

Qz2 Q†
z2 =

(
qr2 q

†
r2 + qd2 q

†
d2

)
+

(
qr2 q

†
d2 + qd2 q

†
r2

)
ε , (27)

and (Qz1 Qz2)
† =

(
q†
r2 q

†
r1 + q†

d2 q
†
d1

)
+

(
q†
d2 q

†
r1 + q†

r2 q
†
d1

)
ε , (28)

then, thanks to the normalization condition qr q
†
d + qd q

†
r = 0 of (19), the norm relation (10) is not difficult to verify.

To that end, we first work out the geometric product (Qz1 Qz2)(Qz1 Qz2)
† using expressions (22) and (28), which gives

(Qz1 Qz2)(Qz1 Qz2)
† =

{
(qr1 qr2 + qd1 qd2)

(
q†
r2 q

†
r1 + q†

d2 q
†
d1

)
+ (qr1 qd2 + qd1 qr2)

(
q†
d2 q

†
r1 + q†

r2 q
†
d1

)}
+
{
(qr1 qd2 + qd1 qr2)

(
q†
r2 q

†
r1 + q†

d2 q
†
d1

)
+ (qr1 qr2 + qd1 qd2)

(
q†
d2 q

†
r1 + q†

r2 q
†
d1

)}
ε .

(29)

Now the “real” part of the above product simplifies to (32) as follows:{
(Qz1 Qz2)(Qz1 Qz2)

†}
real

= qr1 qr2 q
†
r2 q

†
r1 + qd1 qd2 q

†
r2 q

†
r1 + qr1 qr2 q

†
d2 q

†
d1 + qd1 qd2 q

†
d2 q

†
d1

+ qr1 qd2 q
†
d2 q

†
r1 + qd1 qr2 q

†
d2 q

†
r1 + qr1 qd2 q

†
r2 q

†
d1 + qd1 qr2 q

†
r2 q

†
d1 (30)

= qr1 qr2 q
†
r2 q

†
r1 + qd1 qd2 q

†
d2 q

†
d1 + qr1 qd2 q

†
d2 q

†
r1 + qd1 qr2 q

†
r2 q

†
d1 (31)

= ϱ2r1 ϱ
2
r2 + ϱ2d1 ϱ

2
d2 + ϱ2r1 ϱ

2
d2 + ϱ2d1 ϱ

2
r2 . (32)

Here (31) follows from (30) upon inserting the normalization condition (19) in the form qr q
†
d = −qd q

†
r into the

second and third terms of (30), which then cancel out with the sixth and seventh terms of (30), respectively; and

(32) follows from (31) upon inserting the normalization conditions ||q||2 = qq† = ϱ2 for the real and dual quaternions

specified in (14) and (15), for each of the four terms of (31). Similarly, the “dual” part of the product (29) simplifies to{
(Qz1 Qz2)(Qz1 Qz2)

†}
dual

=
{
qr1 qd2 q

†
r2 q

†
r1 + qd1 qr2 q

†
r2 q

†
r1 + qr1 qd2 q

†
d2 q

†
d1 + qd1 qr2 q

†
d2 q

†
d1

+ qr1 qr2 q
†
d2 q

†
r1 + qd1 qd2 q

†
d2 q

†
r1 + qr1 qr2 q

†
r2 q

†
d1 + qd1 qd2 q

†
r2 q

†
d1

}
ε (33)

= 0 . (34)
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We can see this again by inserting into (33) the normalization condition (19) in the form qr q
†
d = −qd q

†
r and the

normalization conditions ||q||2 = qq† = ϱ2 for the quaternions in (14) and (15), which cancels out the first four terms

of (33) with the last four. Consequently, combining the results of (32) and (34), for the left-hand side of (10) we have

||Qz1 Qz2|| =
√
ϱ2r1 ϱ

2
r2 + ϱ2r1 ϱ

2
d2 + ϱ2d1 ϱ

2
r2 + ϱ2d1 ϱ

2
d2 . (35)

On the other hand, once again using the same normalization condition (19), for the right-hand side of (10) we have

||Qz1|| ||Qz2|| =
(√

ϱ2r1 + ϱ2d1

)(√
ϱ2r2 + ϱ2d2

)
=

√
ϱ2r1 ϱ

2
r2 + ϱ2r1 ϱ

2
d2 + ϱ2d1 ϱ

2
r2 + ϱ2d1 ϱ

2
d2 . (36)

Thus, comparing the results in (35) and (36), we finally arrive at the relation

||Qz1 Qz2|| = ||Qz1|| ||Qz2|| , (37)

which is evidently the same as the norm relation (10) in every respect apart from the appropriate change in notation.

Without loss of generality we can now restrict space Kλ to a unit 7-sphere by setting the radii ϱr and ϱd to 1√
2
:

Kλ ⊃ S7 :=
{

Qz := qr + qd ε
∣∣∣ ||Qz|| = 1 and qr q

†
d + qd q

†
r = 0

}
, (38)

where ε = −λ I3e∞ , ε† = ε, ε2 = e2∞ = +1 ,

qr = q0 + q1 λ exey + q2 λ ezex + q3 λ eyez , and qd = −q7 + q6 exey + q5 ezex + q4 eyez , (39)

so that

Qz = q0 + q1 λexey + q2 λezex + q3 λeyez + q4 λexe∞ + q5 λeye∞ + q6 λeze∞ + q7 λI3e∞ . (40)

Needless to say, since all Clifford algebras are associative division algebras by definition, unlike the non-associative

octonionic algebra the 7-sphere we have constructed here corresponds to an associative (but non-commutative) algebra.

We may now view the four associative normed division algebras in the only possible dimensions 1, 2, 4 and 8,

respectively, as even sub-algebras of the Clifford algebras

Clλ1,0 = span{ 1, λex }, (41)

Clλ2,0 = span{ 1, λex, λey, λexey }, (42)

Clλ3,0 = span{ 1, λex, λey, λez, λexey, λezex, λeyez, λexeyez }, (43)

and Clλ4,0 = span
{
1, λex, λey, λez, λe∞, λexey, λezex, λeyez, λexe∞, λeye∞, λeze∞,

λexeyez, λexeye∞, λezexe∞, λeyeze∞, λexeyeze∞
}
. (44)

It is easy to verify that the even subalgebras of Clλ1,0, Clλ2,0 and Clλ3,0 are indeed isomorphic to R, C and H, respectively.
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