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The EPR-Bohm or Bell-test Experiment

Measurements of spin components on each separated fermion are
performed by Alice and Bob at remote stations 1 and 2, providing
binary outcomes +1 or −1 along freely chosen directions a and b.

The common cause λ is predetermined in the overlap of backward
light-cones of Alice and Bob, encoding their shareable information.



The Proposed Hypothesis (2007)
The quantum correlations we observe in Nature can be understood
as correlations among the limiting scalar points of an octonion-like
7-sphere, which is an algebraic representation space of quaternionic
3-sphere. One can define a 3-sphere as the set of unit quaternions:

S3 :=

{
q(ψ, r) := exp

[
J(r)

ψ

2

] ∣∣∣∣∣ ||q (ψ, r) || = %r

}
.

Here J(r) is a bivector (or pure quaternion) rotating about a vector
r ∈ IR3, with rotation angle 0 ≤ ψ < 4π, and %r is the radius of S3.

Thus, the strong correlations we observe in Bell-test experiments
can be understood local-realistically if the 3D physical space, E3,
is modelled as a closed and compact quaternionic 3-sphere using
Geometric Algebra, instead of open space IR3 using “vector algebra.”

Tsirel’son’s Bounds are a Consequence of this Hypothesis:

−2
√

2 6 E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) 6 2
√

2.



Friedmann-Lemâıtre-Robertson-Walker Spacetime

The above is by no means an ad hoc hypothesis. S3 happens to be
isomorphic to the spatial part of a well known solution of Einstein’s
field equations of general relativity, representing a closed Universe
with a constant positive spatial curvature via the FRW line element

ds2 = dt2 − a2(t) dΣ2, dΣ2 =

[
dρ2

1− κ ρ2
+ ρ2dΩ2

]
.

Here a(t) is the scale factor, Σ is a spacelike hypersurface, ρ is the
radial coordinate within Σ, κ is the “normalized” curvature of Σ,
and Ω is a solid angle within Σ. For terrestrial scenarios, a(t) = 1.

The above line element permits three possible geometries with the
product topology IR×Σ. The hypersurfaces Σ can be isomorphic
to IR3, S3, or H3. But only S3 represents a closed universe with a
positive curvature. Moreover, the cosmic microwave background
spectra now prefers the positive curvature at 99% confidence level.



The Special Theorem — Correlations within S3

The quantum mechanical correlations predicted by the entangled
singlet state can be deterministically understood as classical, local,
and realistic correlations among the pairs of limiting scalar points
with values ±1 of a quaternionic 3-sphere, defined by the functions

S3 3A (a, λk) := lim
s1→ a

{+ q(ηas1 , r1)} ≡ lim
s1→ a

{
−D(a) L(s1, λ

k)
}

−−−−→
s1→ a

{
+ 1 if λk = + 1

− 1 if λk = − 1

}
, with

〈
A (a, λk)

〉
= 0, and

S3 3B(b, λk) := lim
s2→ b

{−q(ηs2b, r2)} ≡ lim
s2→ b

{
+ L(s2, λ

k) D(b)
}

−−−−→
s2→ b

{
− 1 if λk = + 1

+ 1 if λk = − 1

}
, with

〈
B(b, λk)

〉
= 0,

where the bivectors L(s1, λk) and L(s2, λk) represent the fermions
emerging from a source that are detected by two detector bivectors
D(a) and D(b), and λ = ± is the orientation of S3 relating L to D:

L(n, λ) = λD(n) ⇐⇒ D(n) = λL(n, λ) .



A Simple Proof of the Special Theorem
What will be the value of the product A B within S3 when the
results A and B are observed by Alice and Bob simultaneously?
For s1 = s2 the product A B of measurement results reduces to

S3 3 A (a, λk) B(b, λk) −→ lim
s1→ a
s2→ b

{−q(ηab, r0)}

= lim
s1→ a
s2→ b

{
− cos( ηab)− L(r0, λ

k) sin( ηab)
}
,

with r0 =
(a · s1)(s2 × b)+(s2 · b)(a× s1)−(a× s1)×(s2 × b)

sin ( ηab)
so that lim

s1→ a
s2→ b

r0 = ~0 ,

giving EBell
L.R.(a, b) = lim

n� 1

[
1

n

n∑
k =1

A (a, λk) B(b, λk)

]
= lim

n� 1

1

n

n∑
k =1

lim
s1→ a
s2→ b

{− cos( ηab)− L(r0, λ
k) sin( ηab)}


= − cos( ηab)− lim

n� 1

[
1

n

n∑
k =1

L(~0, λk) sin( ηab)

]
=− cos( ηab).

Quantum Prediction



Orientation λ of S3 is of Only Relative Significance
The spins L(s1, λ) and L(s2, λ) and the detectors D(a) and D(b)
are two entirely unrelated physical systems. Alice and Bob have no
knowledge of the handedness of the spins until their measurements.
Therefore, spins and detectors are represented by different bases:

Li (λ) Lj(λ) = − δij − εijk Lk(λ)

and Di Dj = − δij − εijk Dk

These bases are related only by the orientation λ of the 3-sphere:

Li (λ) = λDi ⇐⇒ Di = λ Li (λ) .

The handedness relation between the two bivector bases is therefore

L1(λ)L2(λ)L3(λ) = λD1D2D3 = ±D1D2D3.

Consequently, the perspectives of spins and detectors are related as

L(a, λ = +1) L(b, λ = +1) = D(a) D(b),

but L(a, λ = −1) L(b, λ = −1) = D(b) D(a).

Several people have independently verified the above theorem using
a variety of softwares such as Python, Mathematica, R, and Maple.



The Special Theorem in Pictures

The results A and B are events in S3. Since S3 remains closed
under multiplication, their product A B = ±1 also remains in S3.

The cosine curve depicts the local-realistic correlations predicted
within S3 and the dotted lines depict those predicted within IR3.



8D Even Sub-algebra Kλ of the 16D Algebra Cl4,0

IR8 ' Cl3,0 Kλ ←↩ S7

Cl3,0 ⊃ IR3 IR4 ←↩ S3

∪{e∞}

∪{∞}

Quaternionic 3-sphere is sufficient for understanding the singlet
correlations local-realistically. But it is not sufficient for more
general quantum correlations. What is needed is an algebraic
representation space of S3. To find that, let us recall that the
algebraic representation space of IR3 is the Geometric Algebra

Cl3,0 = span{ 1, ex , ey , ez , exey , ezex , eyez , exeyez =: I3 }

by the bijection F : IR3 = span{ ex , ey , ez} → IR8≈ Cl3,0. And

S3 = IR3 ∪ {∞} ←− one-point compactification of IR3.

S3 can be constructed by adding a single point to IR3 at infinity.



“One-point Compactification” of Cl3,0 leads to Kλ

exeyez ≡ I3
e∞−−−−−→ I3e∞ ≡ exeyeze∞

Kλ = span{1, λexey , λezex , λeyez , λexe∞, λeye∞, λeze∞, λI3e∞}xe∞ gives the even subalgebra Kλ of Cl4,0

Cl3,0 = span{1, λex , λey , λez , λexey , λezex , λeyez , λexeyez =: λI3}



Relationships Among Various Algebras and Spaces

IR4 ←↩ S3 S7 ↪→ IR8

IR8 ' Cl3,0 ⊃ IR4 Kλ ⊂ Cl4,0 ' IR16

Cl3,0 ⊃ IR3 Cl3,0 ' IR8

Kλ=
{

Qz = qr + qd ε
∣∣∣ qr ⊥ qd ⇐⇒ ||Qz ||=a scalar

}
||Qz1Qz2|| = ||Qz1|| ||Qz2|| =⇒ Division Algebra

4 even basis vectors∪ those×I †3 e∞ = 8 even basis vectors

Kλ' IR8 is an 8D normed but not yet a division algebra

IR4→ IR3∪{∞}

m

||qr ||= %r

↑
Quaternions

IR8→ IR7∪{∞}

m

||Qz ||=
√
%2r+%

2
d

↑
Qz = qr + qd ε

Even subalgebra of Cl3,0

↑
Select only the 4 even

basis vectors from 23

basis vectors of Cl3,0

The basis vectors ex , ey , ez of IR3 ∪ their products

Cl3,0 is the algebra of orthogonal directions in IR3

Even subalgebra of Cl4,0

↑
Take 4 even basis vectors

∪
4 odd basis vectors× e∞

from 24=16 basis vectors

Kλ = span{1, λexey , λezex , λeyez , λexe∞, λeye∞, λeze∞, λI3e∞}



Multiplication Table of Kλ

∗ 1 λ exey λ ezex λ eyez λ exe∞ λ eye∞ λ eze∞ λ I3e∞

1 1 λ exey λ ezex λ eyez λ exe∞ λ eye∞ λ eze∞ λ I3e∞

λ exey λ exey −1 eyez −ezex −eye∞ exe∞ I3e∞ −eze∞

λ ezex λ ezex −eyez −1 exey eze∞ I3e∞ −exe∞ −eye∞

λ eyez λ eyez ezex −exey −1 I3e∞ −eze∞ eye∞ −exe∞

λ exe∞ λ exe∞ eye∞ −eze∞ I3e∞ −1 −exey ezex −eyez

λ eye∞ λ eye∞ −exe∞ I3e∞ eze∞ exey −1 −eyez −ezex

λ eze∞ λ eze∞ I3e∞ exe∞ −eye∞ −ezex eyez −1 −exey

λ I3e∞ λ I3e∞ −eze∞ −eye∞ −exe∞ −eyez −ezex −exey 1



Products QzQ†z Resemble Split Complex Numbers
Consider an arbitrary multivector in Kλ, such as

Qz = q0 + q1 λexey + q2 λezex + q3 λeyez

+ q4 λexe∞ + q5 λeye∞ + q6 λeze∞ + q7 λI3e∞.

It can be written more conveniently in terms of two quaternions as

Qz = qr + qd ε , where

qr := q0 +q1 λ exey +q2 λ ezex +q3 λ eyez , ||qr || =

√
qrq
†
r = %r ,

qd := −q7 + q6 exey + q5 ezex + q4 eyez , ||qd || =

√
qdq†d = %d ,

and ε :=−λI3e∞ is a pseudoscalar satisfying ε2 = +1 and ε† = ε,
so that

QzQ†z =
(

qr q†r + qd q†d

)
+
(

qr q†d + qd q†r

)
ε

=
(
%2r + %2d

)
+ (−2 q0q7 + 2λ q1q6 + 2λ q2q5 + 2λ q3q4) ε

= (a scalar) + (a scalar) ε ←− like a split complex number

= (a scalar) + (a pseudoscalar).



Composition Law of Norms Holds for All Qz in Kλ
In Appendix B of arxiv.org/abs/1908.06172 I have proved that,
given two multivectors, Qz1 and Qz2, in Kλ, the product of their
norms will always satisfy the norm relation, or composition law

||Qz1Qz2||2 = ||Qz1||2 ||Qz2||2 ,

just as qr and qd themselves do, where the norm of each Qz ∈ Kλ

is defined as ||Qz || :=

√
QzQ†z , which remains positive definite:

||Qz || = 0 ⇐⇒ Qz = 0 .

Both sides of the above composition law work out to be equal to{(
%2r1 + %2d1

)(
%2r2+%2d2

)
+
(

qr1 q†d1 + qd1 q†r1

)(
qr2 q†d2 + qd2 q†r2

)}
+
{(
%2r1 + %2d1

)(
qr2 q†d2 + qd2 q†r2

)
+
(
%2r2 + %2d2

)(
qr1 q†d1 + qd1 q†r1

)}
ε.

This too resembles a split complex number and its squareroot gives

||Qz1 Qz2|| = ||Qz1|| ||Qz2|| .



Inconsistency in the Alleged Counterexample
Let us consider the following two multivectors in the algebra Kλ:

X =
1√
2

(1 + ε) 6= 0 and Y =
1√
2

(1− ε) 6= 0,

where ε† = ε and ε2 = 1. If we use scalar products Z · Z † = ||Z ||2
to evaluate the norms ||X || and ||Y ||, then we get nonzero values

||X || =

∣∣∣∣∣∣∣∣ 1√
2

(1 + ε)

∣∣∣∣∣∣∣∣ =

√
1

2
(1 + ε) · (1 + ε)† =

√
1

2
(1 + 1) = 1

and

||Y || =

∣∣∣∣∣∣∣∣ 1√
2

(1− ε)

∣∣∣∣∣∣∣∣ =

√
1

2
(1− ε) · (1− ε)† =

√
1

2
(1 + 1) = 1.

These give ||X || ||Y || = 1. Whereas for the left-hand side we have

||XY || =

∣∣∣∣∣∣∣∣12(1 + ε)(1− ε)

∣∣∣∣∣∣∣∣ =
1

2

∣∣∣∣(1− ε2)
∣∣∣∣ = ||(1− 1)|| = 0,

where ε2 = 1 is used. Thus we obtain 0 = ||XY || 6= ||X || ||Y || = 1.



Removing Inconsistency from the Counterexample

||X || =

∣∣∣∣∣∣∣∣ 1√
2

(1 + ε)

∣∣∣∣∣∣∣∣ ||Y || =

∣∣∣∣∣∣∣∣ 1√
2

(1− ε)

∣∣∣∣∣∣∣∣
=

√
1

2
(1 + ε)(1 + ε)† =

√
1

2
(1− ε)(1− ε)†

=
√

1 + ε 6= 0 , =
√

1− ε 6= 0,

where ε† = ε, ε2 = 1, and geometric products instead of scalar
products are used, reducing the right-hand side of norm relation to

||X || ||Y || =
(√

1 + ε
)(√

1− ε
)

=
√

(1− ε)(1 + ε) =
√

1− ε2 = 0.

But, as we noted, the left-hand side of norm relation is also zero:

||XY || =

∣∣∣∣∣∣∣∣12(1 + ε)(1− ε)

∣∣∣∣∣∣∣∣ =
1

2

∣∣∣∣(1− ε2)
∣∣∣∣ =

1

2
||(1− 1)|| = 0.

Thus, the norm relation ||XY || = |||X || ||Y || holds ∀ X ,Y ∈ Kλ.



Algebraic Representation Space of S3 is S7

Kλ ⊃ S̃7 :=

{
Qz := qr + qd ε

∣∣∣∣ ||Qz || =

√
QzQ†z =

√
%c + σc ε

}
,

where QzQ†z = %c + σc ε ←− resembles a split complex number

=
(

qr q†r + qd q†d

)
+
(

qr q†d + qd q†r

)
ε

=
(
%2r + %2d

)
+(−2 q0q7 + 2λ q1q6 + 2λ q2q5 + 2λ q3q4) ε.

Setting qr q†d + qd q†r = 0 as a special case, the product QzQ†z
reduces to a scalar quantity, and the quantity from norm relation,{(
%2r1 + %2d1

)(
%2r2+%2d2

)
+
(

qr1 q†d1 + qd1 q†r1

)(
qr2 q†d2 + qd2 q†r2

)}
+
{(
%2r1 + %2d1

)(
qr2 q†d2 + qd2 q†r2

)
+
(
%2r2 + %2d2

)(
qr1 q†d1 + qd1 q†r1

)}
ε,

also reduces to a scalar, which thus reduces the norm relation to

||Qz1 Qz2|| =
√(

%2r1 + %2d1
) (
%2r2 + %2d2

)
= ||Qz1|| ||Qz2||, giving

Kλ ⊃ S7 :=

{
Qz := qr + qd ε

∣∣∣∣ ||Qz || =

√
Qz · Q†z =

√
%2r + %2d

}
.



The General Theorem — Correlations within S7

The quantum mechanical correlations predicted by any arbitrary
quantum state can be deterministically understood as classical,
local, and realistic correlations among the limiting scalar points
of values ±1 of the 7-sphere constructed above, if these points
are specified by manifestly local-realistic functions of the form

S73A (a , λk) := lim
sr1→ ar
sd1→ ad

{
±D(ar , ad , 0) N(sr1, sd1, 0, λk)

}
−−−−−→

sr1→ ar
sd1→ ad

{
∓ 1 if λk = + 1

± 1 if λk = − 1

}
, with

〈
A (a, λk)

〉
= 0

and

S73B(b , λk) := lim
sr2→ br
sd2→ bd

{
∓D(br , bd , 0) N(sr2, sd2, 0, λk)

}
−−−−−−→

sr2→ br
sd2→ bd

{
± 1 if λk = + 1

∓ 1 if λk = − 1

}
, with

〈
B(b, λk)

〉
= 0,

where the orientation λ = ±1 of S7 is assumed to be a fair coin.
The proof of this theorem is given in DOI: 10.1098/rsos.180526.



Two Special Cases are Explicitly Computed in RSOS
For the special case of the two-particle entangled singlet state

|Ψz〉 =
1√
2

{
|z, +〉1 ⊗ |z, −〉2 − |z, −〉1 ⊗ |z, +〉2

}
the strong sinusoidal correlations are reproduced within S7 exactly:

EBell
L.R.

(a, b) = lim
n� 1

[
1

n

n∑
k =1

A (a , λk) B(b , λk)

]
= − a · b .

And for the four-particle GHZ (Greenberger-Horne-Zeilinger) state

|Ψz〉 =
1√
2

{
|z,+〉1⊗|z,+〉2 ⊗ |z,−〉3 ⊗ |z,−〉4

− |z,−〉1 ⊗ |z,−〉2 ⊗ |z,+〉3 ⊗ |z,+〉4
}

the quantum mechanical correlations are again reproduced exactly:

EGHZ
L.R.

(a, b, c, d) = cos θa cos θb cos θc cos θd

− sin θa sin θb sin θc sin θd cos (φa + φb − φc − φd ).

The S7 constructed above captures the spinorial properties of the
3D physical space precisely, reproducing all quantum correlations.
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