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The abstract theory of probability and its interpretation are briefly reviewed, and it is explicitly
demonstrated that the formalism of quantum mechanics satisfies the axioms of probability
theory. This refutes the suggestions which have occasionally been made that “classical”
probability theory does not apply to quantum mechanics. Several erroneous applications of
probability theory to quantum mechanics are examined, and the nature of the errors are exposed.
It is urged that more attention be given to probability theory in the physics curriculum.

L. INTRODUCTION

It is generally agreed that probability must be employed
at a fundamental level in the interpretation of quantum
mechanics. Yet the concept and theory of probability are
usually treated very loosely and superficially. I have not
seen any textbook which demonstrates just how the axioms
of probability theory are satisfied by the formalism of quan-
tum mechanics. The first objective of this paper is to rem-
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edy that shortcoming, and in order to do so I first give a
brief outline of the theory of probability, and those aspects
of its interpretation that are relevant to this task.

It has occasionally been claimed that “classical”’proba-
bility theory does not apply to quantum mechanics. Those
claims are sometimes based on misinterpretations of quan-
tum mechanics, but more often on misinterpretations of
probability theory. Some of those erroneous claims are ex-
amined in the latter part of this paper.
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I1. AXIOMATIC PROBABILITY THEORY

The mathematical content of the theory of probability
concerns the properties of a function P(4 |B), which may
be read as “the probability of 4 conditional on B.” 4 and B
may be “events,” in which case P(4 |B) is “the probability
that event 4 will happen under the conditions specified by
the occurrence of event B.”” Alternatively, A and B may be
propositions, in which case P(A4 |B) is “‘the probability that
A is true given that B is true.” These alternative interpreta-
tions, as well as the interpretation of “probability” will be
discussed in the next section. But all such interpretations
can be based upon a common mathematical formalism,
which derives from a set of axioms. For the sake of definite-
ness I will use the language of events in this section.

It is desirable to treat sets of events as well as elementary
events. Therefore we introduce notations for certain com-
posite events: ~A4 (“notA4 ) denotes the nonoccurrence of
A;A-B(“Aand B”’) denotes the occurrence of both 4 and B;
AV B(“A or B *“) denotes the occurrence of at least one of
the events 4 or B. For brevity these sets of events will also
be referred to as “‘events.” The three operators ( ~, -,V )
are called negation, conjunction, and disjunction. In evalua-
tion of complex expressions the negation operator has the
highest precedence. Thus ~d4-B=(~A4)-B, and
~AVB= ~A)VB.

Several different but mathematically equivalent forms of
the axioms can be given.! The particular choice used here is
influenced by the work of Cox*:

0<P(4 |B)<1, (1)
P(414) =1, (2)
P(~A|B)=1—P(4|B), (3)
P(4-B|C) =P(B|A-C)P(4|C). (4)

Axiom (2) states the convention that the probability of a
certainty (the occurrence of 4 given the occurrence of 4) is
one, and (1) says that no probabilities are greater than the
probability of a certainty. Axiom (3) expresses the intu-
itive notion that the probability of nonoccurrence of an
event increases as the probability of its occurrence de-
creases. It also implies P(~A4 |4) =0, that is to say, an
impossible event (the nonoccurrence of 4 given that 4 oc-
curs) has zero probability. Axiom (4) states that the prob-
ability that two events both occur (under some condition
C) is equal to the probability of occurrence of one of the
events multiplied by the probability of the second events,
given that the first event has occurred. (In the work of
Cox! these quantitative axioms are derived from more fun-
damentatl qualitative postulates. )

The probabilities of negation (~A) and conjunction
(A4 - B) of events each required an axiom. However, no
further axioms are required to treat disjunction because
AVB= ~(~A- ~B);inword, “4 or B” is equivalent to
the negation of “neither 4 nor B.” Thus from (3) we have

P(AVB|C)=1—P(~A4 - ~B|C), (5)
which can be evaluated from the existing axioms to yield
(see Appendix A)

P(AVB|C)=P(4|C) +P(B|C) —P(4-B|C). (6)
If P(4 - B |C) = 0 we say that 4 and B are mutully exclu-

sive on condition C. Then (6) reduces to the rule of addi-
tion of probabilities for mutually exclusive events,

P(AVB|C) =P(4|C) + P(B|C). )
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This is often used as an axiom instead of (3). Indeed it is
possible to derive (3) from (7) (see Appendix B). We thus
have two equivalent sets of axioms: (1)-(4) or (1), (2),
(4), and (7). The former set of axioms is more elegant
because it applies to all events, whereas (7} applies only if
A and B are mutually exclusive. Nevertheless the latter set
is commonly used, and it has advantages in certain situa-
tions.

A very important concept in probability and its applica-
tions is that of independence of events. If
P(B |4 -C) = P(B|C),thatistosay, if the occurrence of 4
has no influence on the probability of B, then we say that B
is independent of 4 (under condition C). From (4) we
then obtain

P(4-B|C)=P(B|C)P(4]|C). (8)

The symmetry for this formula implies that independence
is a mutual relationship; if B is independent of 4 then also 4
is independent of B. This notion is called statistical or sto-
chastic independence in order to distinguish it from other
notions such as causal independence.

HI1. INTERPRETATION OF PROBABILITY
CONCEPTS

The abstract probability theory, consisting of axioms,
definitions, and theorems, must be supplemented by an in-
terpretation of the term “probability.” This provides the
correspondence rule by means of which the abstract theory
can be applied to practical problems. There are many dif-
ferent interpretations of probability because anything that
satisfies the axioms may be regarded as a kind of probabil-
ity.

One of the oldest interpretations is the /imit frequency
interpretation. If the conditioning event C can lead to ei-
ther 4 or ~ A4, and if in # repetitions of such a situation the
event A occurs m times, then it is asserted that
P(4|C) =lim,_, , (m/n). This provides not only an in-
terpretation, but also a definition of probability in terms of
a numerical frequency ratio. The axioms of the abstract
theory can be derived as theorems of the frequency theory.
In spite of its superficial appeal, the limit frequency inter-
pretation has been widely discarded, primarily because
there is no assurance that the above limit really exists for
the actual sequences to which one wishes to apply probabil-
ity theory.

The defects of the limit frequency interpretation are
avoided without losing its attractive feature (close contact
with observable data) in the propensity interpretation.’ The
probability P(4 |C) is interpreted as a measure of the ten-
dency, or propensity, of the physical conditions described
by C toproduce the result 4. It differs mathematically from
the older limit frequency theory in that “probability” re-
mains a fundamental undefined term, and is not redefined
or derived from anything more fundamental. However its
relationship to frequency emerges, suitably qualified, in a
theorem (the law of large numbers). It differs conceptually
from the frequency theory in viewing probability (propen-
sity) as a characteristic of the physical situation C that may
potentially give rise to a sequence of events, rather that a
property (frequency) of an actual sequence of events. This
fact is emphasized by always writing probability in the con-
ditional form P(4 |C), and never merely as P(A4). The pro-
pensity interpretation is particularly well suited for appli-
cation to quantum mechanics.
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In addition to the probability P, one must choose an in-
terpretation of the arguments 4 and C of the function
P(4 |C). So far we have spoken of them as being events, but
one can also treat them as propositions. In many cases the
difference between the two interpretations is merely verbal.
Corresponding to the event A is the proposition “event A
has occurred.” But one can usefully consider propositions
that do not correspond to events. For example one can
consider the probability (conditional on specified experi-
mental evidence) that the electronic charge is within one
part in a thousand of its conventional published value. This
is the point of view that is used in inductive inference, and
we shall have some occasion to apply it. But in spite of the
seemingly greater generality of the interpretation of the
arguments as propositions, it is often more convenient in
quantum mechanics to interpret them as events. For exam-
ple, let 4 be the proposition “the position of the particle lies
between g, and g,.” Let B be the proposition *“the momen-
tum of the particle lies between p; and p,.” Quantum me-
chanics provides a means of computing the probability that
A is true, and also for computing the probability that B is
true. But it does not provide any formula for the probability
that the compound proposition 4 - B, (4 and B), is true.
Whether or not it is a defect of the present formulation of
quantum mechanics, this limitation can be reasonably ac-
commodated within the event interpretation. In comput-
ing the probability P(4 |C) of an event 4, one must specify
all the physical conditions C which are relevant. This may
reasonably be held to include the configuration of any mea-
suring apparatus, since it can influence the outcome of an
event. Since different apparatuses are used to measure posi-
tion than to measure momentum, one will be dealing with
P(A|C,) and P(B|C,), where C, includes the configura-
tion of the position measuring device and C, includes the
configuration of the momentum measuring device. But one
has no occasion to consider events 4 (detection of position
within a certain range) and B detection of momentum
within a certain range) under a common condition C, and
so one does not need to compute P(4 - B |C) in this case.

IV. PROBABILITY AND FREQUENCY

Although no direct connection between frquency and
probability is postulated in the propensity interpretation, a
close connection emerges through a theorem known as the
law of large numbers. The derivation of the simplest form
of this theorem is outlined below.

Let X be some quantity which, under some condition C,
may take on a range of non-negative values, with
P(x<X<x+dx|C) =g(x)dx. Then for any €>0 the
probabilistic average of X (denoted (X )) satisfies

X)= J-wg(X)xdx
0

>f g(x)xdx)ef g(x)dx = eP(X>¢€|C).

Thus we have P(X>€|C) <{X }/¢, which is known as Che-

byshev’s inequality. We may apply this inequality to non-

negative variable [X — (X )|?, instead of X, obtaining
P(|X — (X)[>€|O)<(|X — (X )|?) /e 9

Now let us consider an experiment £ which may have
outcome 4, with probability P(4 |E) = p. In a sequence of
n identical repetitions of E (denoted E" ) the event A may
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occur m times, (0<m<n). We refer to f = m/n as the fre-
quency of outcome A in a realization of the experimental
sequence E” . One expects, intuitively, that fshould be close
to p as n becomes large. The following theorem justifies and
makes more precise this intuitive expectation. Let K; have
the value 1 if the outcome of the ith repetition of E is 4,
otherwise K; is zero. The frequency of 4 is given by
f=2,_,K,/n.Itisnot difficult to show that { /) = p. Sub-
stitution of f for X in (9) then yields

PUr—plelEn<([ 3 & — k) |} fone?

i=1

=3 S[{(K; —p)(K; —p)) ]/ (ne)>. (10)
T T

Since the various repetitions of E are independent, we have

((K; —p)(K; —p)) = (K, = p)){(K; — p)) for i#].
Thus (10) becomes

P(|f— p|>€|lEM)<{(K; — p)*}/né’, (11)

the average on the right-hand side being independent of i.
This result, which is an instance of the law of large
numbers, asserts that the probability of the frequency of A4
being more than € away from p converges to zero as n be-
comes infinite. From the practical point of view, this is the
most important theorem in probability theory, establishing
the connection between abstract probabilities and frequen-
cies in observable data.

It should be noted, in passing, that the full proof of (11)
uses axiom (4) only to the extent that it is needed to derive
the addition rule (7). So if, as is sometimes done, we were
to choose (1), (2), (4), and (7) as axioms, instead of (1)~
(4), we could say that axiom (4) was not needed to derive
the law of large numbers.

V. PROBABILITY IN QUANTUM MECHANICS

In quantum mechanics a dynamical variable R is repre-
sented by a self-adjoint operator R, whose eigenvalues are
the possible values of R:

Rlr,) =r,|r,). (12)

According to a standard postulate of quantum mechanics,
the probability of obtaining the particular value R = r, is
given by

PR =r,|¥) = [{r, V)|, (13)

in the simplest case of a discrete nondegenerate eigenvalue
spectrum and a pure state represented by the vector ¥. (All
vectors here are assumed to have unit norms. ) But it is not
sufficient to merely assert that certain mathematical ex-
pressions are probabilities unless it can be shown that they
satisfy the mathematical theory of probability. In particu-
lar, we must verify that such expressions obey the four axi-
oms of probability theory and, in appropriate circum-
stances, the mdependence property (8).
The expression on the left-hand side of (13) can be read
“the probability that the dynamical variable R has the

) value r, conditional on W.” The latter portion of this state-

ment requires some comment because the state vector ¥ is
not a physical object. Its significance is twofold. Firstly, it
is an abstract mathematical object from which the prob-
ability distributions of observable quantities can be calcu-
lated. Secondly, to assert that the state vector is W can be
regarded as implying that the system has undergone a cor-
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responding state preparation procedure, which could be
described in more detail but all of the relevant information
is contained in the specification of W.

It is clear that (13) satisfies axiom (1), this being a di-
rect consequence of the Schwartz inequality. If the state
vector is the eigenvector |¥) = |r, ), then (13) becomes
P(R =r,|r,) =1, which is the equivalent of axiom (2).
Axiom (3) follows from the more general additivity rule
(7). The events described by R = r,, R = r,, etc. are mutu-
ally exclusive, and the additivity rule,
PI[(R= r) V(R = rz)lw] = |(r1|\l/)|2 + |<r2|\ll>|2,
holds almost by definition. We shall defer consideration of
axiom (4) because it can be better treated by a more gen-
eral formalism. If the system consists of two independent
noninteracting components, which are only formally re-
garded as a single system, then the state vector can be writ-
ten in the form |¥) = |¢)®|¢)®, where the superscripts
refer to the two components. The joint probability distribu-
tion for the dynamical variables R’ and R *, belonging
to components a and b, respectively, is

PRR® =r,R® =r,|V)
= [{rm [9) 17 |(r, [9) ), (14)

in full agreement with (8). We have now verified that the
quantum mechanical postulate (13) satisfies all the ingre-
dients of probability theory that are needed to derive the
law of large numbers. Indeed if we interpreted the compo-
nents @ and b above as systems in the sequence of measure-
ments £ ", decribed in Sec. IV, we could recapitulate the
derivation of the law of large numbers in the language of
quantum mechanics.

The most general description in quantum mechanics is
by means of the state operator p, which has unit trace, is
self-adjoint, and is non-negative definite:

Trp=1, (15)
p=p, (16)
(u|p|u) >0 for all vectors u. (17)

In the special case of a pure state, represented above by the
vector W), the state operator is p = |¥) (¥|. Associated
with the any dynamical variable R is a family of projection
operators My (A) which are related to the eigenvalues and
eigenvectors of (12) as follows:

M (A) = 1) (), (18)
r,eA
where the sum is over all eigenvectors (possibly degener-
ate) whose eigenvalues lie in the subset A. The probability
that the value of R will lie within A is postulated to be

P(ReA|p) = Tr[pMg (A)]. (19)

It is easily verified that the general form (19) reduces to
(13) in the appropriate special case.

We must now verify that (19) satisfies the axioms of
probability theory. Axiom (1) follows directly from (15)
and the fact that M, (A) is a projection operator. The ana-
logue of (2) is obtained if we chose a state prepared in such
a manner that the value of R is guaranteed to lie within A.
This will be so for those states which satisfy
p = M (A)pM, (A), for which (19)is identically equal
to 1. Axiom (3) follows from the additivity rule (7). To
verify it we consider two disjoint sets A, and A,, the union
of which is denoted A,UA,. Now (ReA,) V (ReA,) is equi-
valent to Re(A,UA,). Since the two sets A, and A, are
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disjointed it follows that Mg (A;)Mg (A,) =0, and the
projection operator corresponding to the union of the sets
is just the sum of the separate projection operators,
Mg (AjUA;) =Mz (A)) + Mg (A,). Henceit is clear that
(7) is satisfied. The factorization property (8) follows, as
did (14), from the factorization of the state function for
two independent uncorrelated systems, p = p' ® p'*. We
have now verified that the general statistical postulate (19)
satisfies all of those parts of probability theory that are
needed to derive the key theorem, the law of large numbers.

The remaining axiom (4) is not essential for most of the
applications of probability in quantum mechanics [pro-
vided that (7) replaces (3) as an axiom], but is must be
considered for completeness. Let R and.S'be two dynamical
variables, represented by the operators R and S whose
eigenvalues and eigenvectors are given R|r, ) =, |r,) and
S|s,) =s,1s,). The corresponding projection operators
are denoted My (A, ) and M (A,). Finally, let 4 denote
theevent of R taking on a value within the set A, and let B
denote the event of S taking on a value within the set A,.
We must now evaluate each of the three probabilities in (4)
with the conditional event C being the preparation of a
general state represented by p.

The joint probability on the left-hand side of (4),
P(A4 - B |p), can be evaluated from the formalism of quan-
tum mechanics only if the operators R and S are commuta-
tive (the corresponding projection operators M, and Mg
then also being commutative). In that case the product
M, (A, )M, (A,) is also a projection operator, and the de-
sired joint probability is given by (19) to be
P(4-B|p) = Tr[pMg (A, )M (4,)]-But thereisnoac-
cepted formula in quantum mechanics for a joint probabil-
ity distribution for dynamical variables whose operators do
not commute.

On the right-hand side of (4), the second factor P(4 |p)
is given directly by (19) with A = A,. However the first
factor P(B |4 - p) requires careful interpretation. The sec-
ond argument of the probability function, which we have
called “the conditional event,” must describe the actual
physical conditions to which the probability (or *“propen-
sity”) refers. It does not denote mere subjective informa-
tion or personal belief (as would be the case in a subjective
interpretation of probability ). Therefore, just as p signifies
that the system has undergone a certain state preparation ,
s0 A4 - p implies that is has been subjected to additional fil-
tering interactions that ensure the value of R lies A,. In
principle one should analyze the dynamics of this process
in detail in order to compute the resulting state function.
But if this filtering process does nothing but remove unac-
ceptable values of R then it is reasonable to represent its
result by the projected and renormalized state operator,
p' =Mz (A,)pMg (A,)/Tr[Mg (A, )pM, (A,)]. One
then obtains the following result for the right -hand side of
(4):

P(B|4 - p)P(4 |p) = Tr[p'Ms(4,) [ Tr[pMg (A,) ]
= Tr[Mpg (4,)pMg (A, )M (A,)].

If My commutes with Mg, then this expression furthur
reduces to

P(B|4-p)P(4 |p) = Tr[pM, (A, )Ms(4A,)]
=P(A-B|p),
in agreement with axiom (4). Thus we see that this last
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axiom of probability theory is obeyed by the formalism of
quantum mechanics provided the probability of the joint
event 4 - B is defined in the formalism. The restriction, in
this case, to dynamical variables whose operators commute
is not a restriction on the applicability of “classical” prob-
ability theory to quantum mechanics. It is rather a limita-
tion of the formalism of quantum mechanics, in that it does
not assign meaning to the conjunction of arbitrary events.

(See the discussion at the end of Sec. I11.)

VI. ERRONEOUS APPLICATIONS OF
PROBABILITY THEORY IN QM

A. The double slit

This example has been repeated many times in slightly
differing versions. The first of which may be that due to
Feynman.* The experiment consists of a partlcle source, a
screen with two slits (labeled no. 1 and no. 2) in it, and a
dectector. By moving the detector and measuring the parti-
cle count rate at various positions, one can measure the
probability of a particle passing through the slit system and
arriving at the point X. If only slit no. 1 is open the probabil-
ity of detection at X is P, (X). If only slit no. 2 is open the
probability of detection at X is P, (X). If both slits are open
the probability of detection is P,,(X). Now passage
through slit no. 1 and passage through slit no. 2 are certain-
ly exclusive events, so one might expect, from (7), that
P ,(X) should beequal to P, (X) + P,(X). But experiment
clearly shows that this is not true, hence it might be con-
cluded that the rule (7) of probability theory does not hold
in quantum mechanics.

In fact the above argument draws its radical conclusion
from an incorrect application of probability theory. One is
well advised to beware of probability statements expressed
in the form P(X) instead of P(X |C). The second argument
may be safely omitted only if the conditional event or infor-
mation is clear from the context, and is constant through-
out the problem. This is not the case in the double slit exam-
ple. The probability of detection at X in the first case (only
slit no. 1 open) should be written as P(X |C,), where the
conditional information C, includes (at least) the state
function W, for the particle beam and the screen state .S,
(only slit no. 1 open). In the second case (only slit no. 2
open) the probability should be written as P(X |C,), where
C, includes the state function ¥, for the particle beam and
the screen state S, (only slit no. 2 open). In the third case
(both slits open) the probability is of the form P(X |C;),
where C; includes the state function ¥,, (approximately
equal to ¥, 4+ W,, but this fact plays no role in our argu-
ment) and the screen state S, (both slits open ). We observe
from experiment that P(X |C;) #P(X|C,) + P(X|C,).
This fact, however, has no bearing on the validity of rule
(7) of probability theory. Essentially this counter argu-
ment to Feynman was given by Koopman.®

B. The superposition fallacy

The following argument is taken from Sec. 2.2 of the
textbook by Trigg,® although other versions of it exist.
“Classical probabilities are compounded according to the
relation

P(B'|4") =ZP(B'IC’)P(C'|A'), (207)
o
where the summation is over all members C’ of a set of
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nonoverlapping states connecting A ' and B'.”

It is then noted that in quantum mechanics this relation is
satisfied by amplitudes, (B'|4') = 2. (B'|C'){(C’|4").

Since the probabilities are the squares of the amplitudes.

P(B'|A’) = |[(B'|A")|*,it follows that the equation (20?)
of the “classical theory” can hold only if the quantum in-
terference terms are negligible.

There is no doubt that (207?) fails to hold as written, but
we must examine more closely its status with respect to
probability theory. We may presume from the context that
A',B’,and C' denote events which can be characterized by
unique values for certain corresponding dynamical vari-
ables, and moreover that the set of possible values of C’,
say, is a mutually exclusive and exhaustive set. That is to
say, no more than one such value can occur at a time (ex-
clusive), and there are no other possible outcomes in the

- relevant class of events than one of the values from this set

(exhaustive). Put yet another way, if the set {C,,C,,C; -+ }
contains all possible values of C' then the disjunction of all
those possibilities, C, VC,V C;V -, is a certainty. In at-
tempting to derive (20?) we make use of (4) to obtain
P(B'-C'|4’)=P(B’'|C'-A")P(C'|A"),and then sum
over all possible values of C'. Since each of B'.C,,
B'-C,, - are exclusive, it follows from (7) that
2.PB’-C'|4'y=P[B'- (C,VC,VCV - )|4']

= P(B’|A"). Therefore the correct deduction from “clas-
sical” probability theory is

P(B'|A4') =Z..P(B'|C'-A")P(C'|4"),

rather than the questionable (20?).

It is now apparent that the quantum mechanical super-
position principle for amplitudes is in no way incompatible
with the formalism of probability theory, and that the con-
trary claim was based on an incorrect applicatjon of prob-
ability theory. The error in this example is very similar to
that in Sec. VI A. In the former case the conditional argu-
ment of the probability function was omitted, leading to an
erroneous conclusion. In this case only a part of the rele-
vent conditional information was included by writing
P(B’|C")instead of P(B'|C' - 4 ') in (20?). That would be
permissible only if it could be shown that the additional
information was not relevant, which is evidently not the
case.

(21)

C. The reciprocity fallacy

This example is taken from Sec. 2.3 of the same textbook
by Trigg.®
“If the times involved in the specification of the two states
are the same, the probability P(B’|4 ') (here Ialter Trigg’s
notation slightly in order to conform to that used in this
paper), is actually the probability that the system satisfy
two conditions simultaneously. This cannot depend on the
order in which the conditions are stated, so we require

P(B'|A") =P(4'|B")”. (227)

A probability theorist will immediately recognize that
the author of the above quotation has confused the condi-
tional probability P(B'|4 ) with a joint probability. “The
probability that the system satisfy two conditions simulta-
neously” (under some unspe01ﬁed prior condition C),
shouldbe denoted as P(4 ' - B’|C), which has nothing todo
with (227).

The spurious equation (22?) draws its superficial plausi-
bility from theamplituderelation, P(B'|4') = |[{B'|4") |3,
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which appears to support (22?), though not, of course, the
specious argument that preceded it. But even that apparent
connection is misleading.

To see more clearly the subtlety which is involved, let us
rewrite the relation between probability and amplitude in a
more explicit form,

PR =r,|¥) = |{r, W) (13)

This is interpreted as the probability that the dynamical
variable R has the value r,, conditional on the state being
V. But what about the inverse probability, P(V|R =r,),
which is the probability that the state was ¥ on the condi-
tion that R was found to have the value ,? Does it have the
same value (13)?

One can easily show, by means of a simple example, that
the inverse probablllty does not have the value (13). Sup-
pose that space is divided into cells and that R is a discrete
position variable. If ¥ is chosen to be a wavefunction local-
ized within the nth cell, then one will have
P(R =r,|¥) = 1. From a knowledge of ¥ one can predict
with certainty that the particle lies in the nth cell. But sup-
pose, on the other hand, that ¥ is unknown and one has
only the single measurement result R = r,. Then all that
one can infer about W is that it must have been nonzero in
the nth cell. There is no assurance that the (definite but
unknown) state preparation procedure which led to the
state ¥ would, if repeated, yield the same value for R, and
so there is no reason to believe W to be localized. Therefore
P(¥|R =r,) will definitely be less than one.

The relatlon between the direct and inverse probabilities
can be deduced by observmg that since the left-hand side of
(4) is symmetrical in 4 and B, so must be the right-hand
side. Hence we obtain

P(A|B-C)=P(B|A-C)P(4|C)/P(B|C), (23)

which is known as Bayes theorem. Applied to the above
example, it yields

P(¥|R=r, C)
=P(R=r,|¥-C)P(¥|C)/P(R =r,|C). (24)

Here C denotes any other relevant prior information about
¥, and it may be ignored if there is none.

At this point we have left the domain of events and the

propensity interpretation of probablhty This is so because
the occurrence of the state W is not an event which can be
causally influenced by the subsequent determination that
R =r,. We are instead engaging in inductive inference,
attemptlng to infer what the state might have been, on the
basis of information which is not adequate to determine it
uniquely. The value of this first factor on the right-hand
side of (24) is simply PRR=r,|¥-0C)
= PR =r,|¥) = |{r,|¥)|? since no further informa-
tion C about ¥ is relevant if ¥ is given. The last factor,
P(R =r,|C), is called the prior probability that R = r,. It
might be a uniform distribution over the portion of space
that can possibly be occupied by the particle. The second
factor, P(¥|C), is the prior probability, conditional on
whatever information C may be available, that the state
should be W. It is rather difficuit to evaluate, and must be
regarded as only a degree of reasonable belief. It should
now be apparent that we are very unlikely to obtain
P(Y|R=r,) =P(R=r,|¥), contrary to the spurious
equation (227).
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VII. CONCLUSIONS

In this paper I have briefly reviewed axiomatic probabil-
ity theory and its interpretation, with emphasis on those
aspects that are most relevant to quantum mechanics. By
demonstrating explicity that the axioms of probability the-
ory are satisfied by the formalism of quantum mechanics, I
have refuted any and all claims that “classical” probability
theory is not valid in quantum mechanics. The only anom-
aly is the fact that joint probability distributions for two or
more dynamical variables are not conventionaly defined
unless the corresponding operators are commutative. But
quantum mechanics can hardly be said to contradict (liter-
ally, “speak against”), probability theory on this point,
since the accepted formalism of quantum mechanics is sim-
ply silent here.

Some examples of erroneous applications of probability
theory in quantum mechanics have been exposed and ana-
lyzed. In view of the fact that these errors were committed
by well educated physicists, one is led to the conclusion
that probability theory needs greater emphasis in our curri-
culum. This is especially so in relation to quantum mechan-
ics, where probability enters at a fandamental level. I hope
that this paper will be helpful in achieving this goal.

APPENDIX A: DERIVATION OF (6), (BASED ON
SEC. 5 OF COX?)

To evaluate (5) by means of axioms (1)-(4) we require
a lemma:

(PIX-Y|O)IPX-~Y|O)
=PX|CO)P(Y|X-C)+PX|C)P(~Y|X-C)
=PX|C){P(Y|X-C)+P(~Y|X-C)}
= P(X|C). (Al)
Here we have used (4) and (3). Using (Al) with

X = ~A and Y = ~B, we obtain
P(~A4-~B|C) =P(~A4|C) —P(~A4-B|C).

In the first term we use now (3), and in the second term
we use (A1) with X = B, Y = 4. This yields
P(~A4-~B|C)

=1—P(A|C)—[P(B|C) —P(B-4|0)].

Upon substitution of this result into (5) we obtain (6).

APPENDIX B: DERIVATION OF AXIOM (3) FROM
(7)

By noting that 4 and ~4 are mutually exclusive, and
substituting B = ~4 in (7), we obtain P(4V ~4 |C)
=P(A4|C) + P(~A|C).NowAV ~4,(“Aornot4”),is
intutively a certainty, and if we set its probability equal to 1
then we immediately obtain (3). The only gap in this proof
lies in the fact that certainty is defined by axiom (2), and we
should relate our intuitive notion of certainty to that defini-
tion. A formal proof that P(4V ~4 |C) = 1is to be found

on p. 17 of the book by Cox.”
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Some interpretations of quantum mechanics try to describe the probabilistic nature of quantum
measurements in a way that allows a system in a pure state to always have precise (if not
simultaneously knowable) values for all its observable variables. In what might be called a simple
ensemble interpretation, the quantum mechanical state vector is assumed to define a statistical
ensemble of identically prepared systems, each of which has precise values for all its observable
variables, and the act of measurement is equivalenced to a straightforward sampling of that
ensemble. It is shown here, in a manner that should be suitable for a first course in quantum
mechanics, that a simple ensemble interpretation is not possible for some quantum systems, and
hence is untenable as a general premise. The analysis is essentially a repackaging of the Bell
argument against hidden variables, although hidden variables are never invoked here.

L. INTRODUCTION

A generally accepted tenet of quantum mechanics is the
measurement prediction postulate': If an observable A with
operator A is measiired on a system whose state vector is
| ¥), then the probability of obtaining the eigenvalue a, of A
is equal to the square modulus of the projection |¥) onto
the subspace spanned by the eigenvectors of A belonging to
a;.

Proporents of the Copenhagen interpretation of quan-
tum mechanics use the measurement prediction postulate
in conjunction with the measurement reduction postulate.
According to the latter, if the eigenvalue a; is actually ob-
tained in a measurement of 4 on the system in the state |¥),
then the state vector of the system becomes coincident with
(or is reduced to) the normalized projection |¥) onto the
subspace spanned by the eigenvectors of A belonging to a;.
A literal interpretation of the prediction and reduction pos-

tulates together strongly suggests that a system in the state
|¥) cannot meaningfully be said to “have a value” for A
unless | ¥) happens to coincide with one of the eigenvectors
of A; indeed, this is the orthodox Copenhagen view.

Although there is a wide diversity of attitudes toward the
Copenhagen interpretation, it is generally agreed that the
prediction and reduction postulates together at least pro-
vide a correct algorithm for calculating, in a probabilistic
sense, the results of virtually any conceivable series of
quantum measurements. However, many physicists find
the reduction postulate unpalatable, and they reject in par-
ticular the classically bizarre contention that a real phys-
ical system often does not have values for some of its legiti-
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mate observable variables. Some dissenters to
Copenhagenism maintain that, leaving aside the reduction
postulate, the implications of the prediction postulate can
be fully accounted for by taking the following more plausi-
ble point of view?: The state vector |¥) specifies, not an
individual system, but rather a statistical ensemble of iden-
tically prepared systems, each of which has precise values
for ail its dynamical observables. The values of these obser-
vables are distributed among the ensemble systems in such
a way that the probability of randomly selecting an ensem-
ble system that has 4 = g, is equal to the probability given
by the prediction postulate for obtaining @, in a measure-
ment of 4. We shall call this viewpoint a “simple ensemble
interpretation” of quantum mechanics, and we note that it
does not conflict with the Heisenberg uncertainty principle
because it regards the uncertainty AA in A4 in the state |¥)
as simply the statistical spread in the distribution of the A
eigenvalues among the ensemble members.
. The purpose of this paper is to show, in a way that should
be accessible to first year students of quantum mechanics,
that a simple ensemble interpretation is not possible for
some quantum systems, and hence is untenable as a general
premise. Our argument is patterned after Bell’s® argument
against simple hidden variable theories, or more precisely,
Bell’s argument as simplified and clarified by Wigner,* d’E-
spagnat,’ and Harrison.® In a sense, we shall merely make
the point that the difficulties discovered by Bell and his
interpreters regarding hidden variable theories also arise
for ensemble interpretations, despite the fact that ensemble
interpretations need not overtly entail hidden variables.
To make our discussion as simple as possible, we shall
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